Geometri

Kartezyen mi, Kutupsal mı? Bize Hangi Koordinatlar Lazım?

Koordinatlar günlük hayatımızda önemli etkisi olan ve farkında olmadan her yerde karşımıza çıkan basit fikirlerden birisidir. Bir kağıdın üzerine bir nokta koydunuz ve bunun yerini tarif etmek istiyorsunuz diyelim. Bunu koordinatlar yardımıyla tarif edebilirsiniz. Ancak hangi koordinatlar? Bir noktanın yerini tarif etmek istediğimizde çoğumuz Kartezyen koordinat sistemini kullanırız. Bunun için İki dik eksen çizeriz ve bir noktanın konumunu iki koordinatla tanımlarız.

Cartesian coordinates
P noktası P (3,2) diye gösterilir.

Ancak bu noktayı göstermenin daha güzel bir yolu daha vardır. Polar koordinatlar yada diğer adı ile Kutupsal Koordinat Sistemi…

Kutupsal Koordinat Sistemi

Kutupsal koordinat ile kastedilen aynı P noktasını merkeze (orijin) olan uzaklık ve bir açı ile göstermektir. Açıyı belirtmek için Yunan harfi, θ (teta) kullanılır. Bu durumda bir kutupsal koordinat, (x, y) yerine (r, θ) olarak yazılmalıdır. Bu tıpkı bir aksiyon filmindeki bir denizaltının komutanının θ derecelik bir kerterizde millerce uzakta bir geminin olduğunu ilan etmesi gibi bir durumdur.

Kartezyen koordinat sistemi ile gösterilen bütün noktalar kutupsal koordinat sistemine ve kutupsal koordinat sistemindeki bütün noktalar kartezyen koordinat sistemine çevrilebilir. Elbette bu çeviriyi yapmak için bir miktar trigonometri bilmek gerekir. Bazı şekilleri kartezyen sistemde açıklamak oldukça zor iken polar koordinatlar yardımı ile bu iş oldukça kolaylaşır. Hangi şekiller bunlar derseniz mesela merkezi (0,0) ve yarıçapı 2 birim olan bir çember düşünelim. Düşünmenizi kolaylaştırmak için şekle göz atabilirsiniz. Bu çemberi iki biçimde ifade edebiliriz.

Gösterilen noktalar Kartezyen koordinat sisteminde (√2, √2) ve kutupsal koordinat sisteminde (2,45) biçiminde ifade edilir. Burada açı derece biçiminde verilmiştir.

Kartezyen sistemde biraz da Pisagor teoremi yardımı ile x2+y2=4 ve polar sistemde ( 2, θ) biçiminde. Bu oldukça kolay ancak işleri biraz karıştıralım. Polar koordinatların genel olarak (r, θ) biçiminde gösterildiğini biliyoruz ya r=θ olursa yani (θ, θ) biçimli bir eğriyi çizmeye çalışırsak karşımıza nasıl bir görüntü çıkar dersiniz?

Arşimet Spirali

Unutmayalım θ bizim açımız ve bu açıyı öncelikle bir tur, yani 0 ile 2π arasında olacak biçimde alalım ve çizelim. Daha sonra açımızı 2. 3. 4. turu atacak biçimde büyütelim. Karşınıza çıkacak şeklin adı “Arşimet Spirali“dir.

Arşimet spirali ya da aritmetik spiral; iki boyutlu düzlemde, orijinden çıkan ve sabit açısal hızla dönmekte olan bir doğru üzerinde, sabit hızla dışarıya doğru ilerleyen bir noktanın izleyeceği eğridir. Arşimet spiralinin gerçek dünyada pek çok uygulaması vardır.

İsmini, M.Ö. 3. yüzyılda yaşamış ve Spiraller Üzerine adlı kitabında bu eğrileri incelemiş olan Yunan matematikçi Arşimet’ten alır. Gördüğünün gibi düzgün dağılım gösteren bir spiral bu, işin güzel tarafı merkezden başlayan bir doğru çizdiğinizde doğrunun spirali kestiği noktaların arası her zaman  2π  kadar olacaktır. Doğal olarak bu spirali kartezyen sistemde açıklamak oldukça zordur.

Logaritmik Spiral

Kafalar biraz karıştı ise devam edelim. (r, θ) tanımımıza geri dönelim ve bu sefer $r=e^{\theta /5}$ olarak alalım. Burada  bildiğiniz gibi $e \approx 2.718$ değerine karşılık gelmektedir. Şimdi bu yeni koordinatlarımızı çizdiğimizde aslında karşımıza birçoğumuzun yakından tanıdığı bir şekil çıkacaktır. Öncelikle çizime bir göz atalım. İşte bu da logaritmik spiraldir. Logaritmik spiralde noktaların aralarındaki mesafeler, dışarıya doğru gidildikçe bir geometrik dizi halinde artar.

Logaritmik (veya eşaçılıspiral, doğada sık rastlanan bir spiral çeşididir. İlk olarak 17. yüzyılda René Descartes ve Jakob Bernoulli tarafından tanımlanmış ve incelenmiştir. Bernoulli bu eğriye, kendine özgü matematiksel özelliklerinden dolayı, spira mirabilis (mucizevi spiral) adını vermiş, ve mezar taşına bir logaritmik spiral oyulmasını vasiyet etmiştir.

Güneş’in manyetik alanı gibi pek çok dinamik spiral ise Arşimet spiralidir. Doğada rastlanan durağan spiraller (nautilus kabuğu, sarmal galaksi, örümcek ağı, vs) logaritmik spirallerdir. Spirallerle ilgili anlatılacaklar elbette sadece bu kadar değil, ama şimdilik bu ön bilgi yeterli. Bundan sonra ne zaman kartezyen ne zaman polar sisteme ihtiyaç duyacağınız konusunda artık daha kolay karar vereceğinizi düşünüyorum.

Kaynak: Maths in a minute: Polar coordinates; https://plus.maths.org

Matematiksel

Bir cevap yazın

E-posta hesabınız yayımlanmayacak.

İlgili Makaleler

Başa dön tuşu