Sayılar Teorisi

İrrasyonel Sayıların Keşfi ve Karekök 2 Sayısının Hikayesi

Matematik, sayıların bilimidir ve tıpkı diğer bilim türleri gibi, sürekli olarak gelişmektedir. Bununla birlikte, yeni fikirler yarattığı çelişkilerden dolayı her zaman hoş karşılanmaz. Benzer bir şekilde, irrasyonel sayıların keşfi de yerleşik sayı doktrinlerine meydan okumuştu. MÖ 5. yüzyılda Yunanistan’da, Sayıların babası” olarak bilinen Pisagor ve ona inananlar evrenin sayılardan yapıldığına inanıyordu. Pisagor’un sloganı, okulunun girişinin üzerine oyulmuştu. “All is number. ” yani “Her şey sayıdır”.Pisagorcular bütün sayıların rasyonel olduğuna inanırlardı, yani onlara göre tüm sayılar sadece ya sayma sayısıydı ya da iki sayma sayısının oranı olarak ifade edilebilirdi. Örneğin, 24, 24/1 olarak, 0.6 ise 3/5 olarak gösterilebilirdi.

pisagor tarikatı

Rasyonel ve İrrasyonel Sayılar nedir?

Sayılar ve matematik için ilk temelimiz, bir şeyleri sayma ve ölçmeye yönelik pratik ihtiyaçtan kaynaklanmaktadır. Bu nedenle doğal sayıları kavramak kolaydır. Ölçülebilir miktarları daha küçük parçalara bölme ihtiyacı nedeniyle kesirler de mantığa uygun gelmektedir. Bu nedenle iki sayma sayısının oranı biçiminde yazılabilen sayılar bugün rasyonel sayılar olarak biliniyor. Bunun karşıtı gibi gözüken “İrrasyonel sayılar” adı, kelimenin tam anlamıyla bu sayıların “mantıktan yoksun” olduğu anlamına gelmez. Benzer şekilde ifade edilemeyen herhangi bir sayı irrasyonel bir sayıdır. İnsanlar bu tür sayıların varlığından haberdar olsalar da, rasyonel sayıların tanımıyla çeliştikleri için Pisagor zamanında henüz kanıtlanamamıştı. Pisagor’un öğrencilerinden Hippasus tarihte “irrasyonel” sayıların varlığını kanıtlayan ilk kişi olarak kabul edilmektedir.

Hippasus dik kenar uzunlukları 1 birim olan bir ikizkenar dik üçgende Pisagor Teoremi uygulandığında hipotenüsün uzunluğunu veren, yani karesi 2’ye eşit olan sayının iki sayma sayısının oranı olarak ifade edilemeyeceğini keşfetti. Kenarları 1 birim uzunluğunda olan karenin köşegeni karekök 2 birim uzunlukta idi. Yani yaklaşık 1.4142. Bugün için size bu sayı garip gelmeyebilir ancak o dönemde durum farklıydı. İşte bu nedenle irrasyonel sayı olarak adlandırıldı. Ancak elbette farklı bir sayı kümesinin varlığı dönemin mevcut inançları ile çelişmekteydi. Bu da aslında Hippasus’un sonunu hazırlamıştı.

Karekök 2 sayısı irrasyoneldir dediğimizde ne demek isteriz?

Örneğin Karekök 2 sayısını bir hesap makinası yardımı ile hesaplarsak 1.4142135623730950488016887… gibi bir sonuç elde ederiz. Dikkat ederseniz rakamlar arasında hiçbir tekrar bulunmamaktadır. Şimdi aşağıdaki örneklere bakalım. 1/7=0.142857142857142857142857 … biçiminde bir sonuca sahiptir. Dikkatli bakarsanız 142857 rakam öbeği tekrarlamaktadır. Şimdide1/109 kesrine bakalım.

1/109=0.0091743119266055045871559633027522935779816513761467889908256880733944954128440366972477064220183486238532110091743119266055045871559633027522935779816513761467889908256880733944954128440366972477064220183486238532110091743119266055045871559633027522935779816513761467889908256880733944955412844036697247706422018348623853211009174… biçiminde devam eder. Kesrin ilk 100 basamağını hesapladığımızda herhangi bir tekrar görmeyiz. Bu, kesrin irrasyonel olduğu anlamına mı gelir? Hayır gelmez. Eğer hesaplamamızı 330 basamağa kadar götürürsek sayıda 108 rakamlı bir devir bulunduğunu buluruz. Oysa ki, bir irrasyonel sayıda böyle bir tekrar elde etmemiz mümkün değildir.

Hippasus’un Karekök 2 sayısı için yaptığı ispat

Kendisi işe √2 sayısının rasyonel yani iki sayma sayısının oranı olduğunu kabul ederek başladı. Her rasyonel sayı bir oran olarak ifade edilebildiğinden, √2, p / q biçiminde yazılır. Burada, p ve q tamsayıdır ve 1 dışında herhangi bir ortak bölene sahip değildir. Denklemin her iki tarafının karesi alındığında p2/q2=2, yani diğer bir deyişle p2=2q2 olur. Tek sayıların karelerinin her zaman tek sayı verdiğini, çift sayının karesinin ise her zaman çift sayı verdiğini biliyoruz. Buradan anlıyoruz ki p sayısı bir çift sayıdır.

O zaman bir k tamsayısı için p=2k yazabiliriz. Şimdi bunu denklemde yerine yazalım. 2q2=(2k)2=4k2oldu, sadeleştirme sonucunda q2=2kifadesi bulundu. Bu durumda q2‘nin, dolayısıyla q’nun da çift olması gerekiyor. Ve işte burada işler karışıyor, sonuçta ikisi de çift sayı ise sadeleşebilmeliler oysa biz başlangıçta bu sayıların aralarında asal olduğunu yani sadeleşmediğini kabul etmiştik. Bu, başlangıçtaki “Karekök 2” nin rasyonel bir sayı olduğu varsayımımızın yanlış olduğu ve bu nedenle irrasyonel olması gerektiği anlamına gelir.

Hippasus neden öldürüldü?

İrrasyonel sayıların keşfi, matematik adına önemli bir keşifti. Ancak değişim gelenekçiler için kolay değildir. Sonuçta bu keşif onların mutlak gerçeğinin karşısında duruyordu. Bunun sonucunda rivayete göre Hippassus’u bir deniz yolculuğuna çıkardılar ve denize attılar. Efsane ya da değil kesin bilemeyiz ama gerçeklik payı kulağa olası gibi geliyor.

Kaynak:

Matematiksel

Sibel Çağlar

7 yıl Kadıköy Anadolu Lisesinin devamında lisans eğitimimi Marmara Üniversitesi İng. Matematik öğretmenliği üzerine tamamladım. Devamında 20 yıl çeşitli özel eğitim kurumlarında matematik öğretmenliği ve eğitim koordinatörlüğü yaptım. 2015 yılında matematiksel.org web sitesini kurdum. Amacım bilime ilgiyi arttırmak, bilimin özellikle matematiğin zihin açıcı yönünü açığa koymaktı. Yolumuz daha uzun ve zorlu ancak en azından deniyoruz.

3 Yorum

  1. Çok güzel yazılar yazıyorsunuz, sizleri kutluyorum. Yukarıdaki sayı kök 2 değil kare kök 2 olduğunu hatırlatma cüretinde bulunabilir miyim?

  2. Haklısınız, uyarınız için teşekkürler.

  3. Bu kadar çorak iklimde matematiğin aydınlık dünyasından kesitler sunduğumuz için teşekkür etmeyi bir borç bilirim.
    Saygılarımla.

Bir cevap yazın

E-posta hesabınız yayımlanmayacak.