
Yazımıza bir soru ile başlayalım. “Bir fastfood restoranının her Cuma gecesi ortalama 400 müşterisi varsa, herhangi bir Cuma gecesi 600 müşterinin gelme olasılığı nedir?”. Bu soru size bir miktar anlamsız gelmiş olmalıdır. Sonuçta henüz gerçekleşmemiş ve gelecekte olacak olan bir olay için belirli bir tahminde bulunmamızı istemektedir. Ancak mevcut istatistikleri inceleyip gelecek hakkında tahminde bulunmamız aslında mümkündür. Aslına bakarsanız Poisson dağılımı geleceği okumaya cesaret eden ilk formüllerden biridir.
Adını Fransız matematikçi Siméon Denis Poisson’dan (1781 – 1840) alan bir Poisson dağılımı, bir olayın ne sıklıkta meydana geldiğini bildiğinizde, belirli olayların gerçekleşme olasılığını tahmin etmeye yardımcı olan bir araçtır. Poisson dağılımının doğru olabilmesi için tüm olayların birbirinden bağımsız olması, olayların zamana göre hızlarının sabit olması ve olayların aynı anda oluşamaması gerekir. Ayrıca, ortalama ve varyans birbirine eşit olmalıdır.

“Hayat sadece iki şey için yaşamaya değer. Matematik yapmak ve matematik öğretmek” söylemi ile hatırlanan Fransız bilim tarihinin en çok eser bırakan isimlerinden birisi olan Siméon-Denis Poisson, bu dağılımı ilk olarak 1837 tarihli Recherches sur la probabilite des jugements en matière criminelle et matière civile ( Ceza hukuku ve medeni hukuk alanlarındaki hükümlerin olasılığı üzerinde araştırmalar) adlı çalışmasında ortaya atmıştır. Şimdi gelin biraz daha detaya inelim.
Poisson Dağılımı Nasıl Hesaplanır?
Belirli bir zaman diliminde bir olayın ortalama a kez gerçekleştiğini varsayalım. Örneğin, sosyal medya akışınızda dakikada ortalama üç yeni gönderi göreceğinizi biliyor olabilirsiniz. Ancak bu bilgi, bir olayın her zaman diliminde tam olarak a kez gerçekleşeceği anlamına gelmez. Bazen dakikada beş, bazen ise yalnızca 1 gönderi görebilirsiniz. Dolayısıyla, “Bir dakika içinde tam olarak k yeni gönderi görme olasılığım nedir?” diye sormakta haklısınız. Burada k, 0 veya 1 veya 2 veya başka herhangi bir pozitif tam sayı olabilir.
Bu soruyu cevaplamak için bir olasılık dağılımına ihtiyacınız var – aslında Poisson dağılımına ihtiyacınız var. Bu dağılım söz konusu olaylar birbirinden bağımsız olduğu sürece işe yarayacaktır. Bunun sonucunda da bir olayın belirli bir birim zamanda tam olarak k kez gerçekleşme olasılığı aşağıdaki formülle hesaplanacaktır.

Sosyal medya örneğimizde, “a” dakikada 3 gönderiye eşittir. Gönderilerin tamamen bağımsız olduğunu varsayarsak bir dakikada tam olarak bir yeni gönderi görme olasılığınız aşağıdaki gibi olacaktır.

Aşağıdaki grafik a=3 için Poisson dağılımını göstermektedir. Gördüğünüz gibi k büyüdükçe, birim zamanda k olay görme olasılığı sıfır olma eğilimindedir.

Poisson Dağılımı Ne İşimize Yarayacaktır?
1837’de Fransız matematikçi Siméon Poisson tarafından tanıtılan ve Abraham de Moivre’nin çalışmasına dayanan bu dağılım yardımıyla, bir bölgede görülen tifo hastalığının sayısı, gün içerisinde eczaneye tansiyon ölçtürmeye giden kişi sayısı, bir kavşakta oluşan kaza sayısı, bir müşteri hizmetleri servisine her saat başı gelen telefon sayısı, bir duraktan saat başı geçen otobüs seferlerinin sayısı gibi çok çeşitli olasılıkları tahmin etmek mümkündür.

Genellikle bir Poisson dağılımı büyük sayıda olay ortaya çıkabilmesi mümkün olduğu, ama bu ortaya çıkması mümkün olayların nadir olduğu kabul edilen, sistemlerde uygulanabilir. Bilimsel alanlarda klasik örnekler atomların nükleer parçalanması; verilen bir DNA zincirinde ortaya çıkan mutasyon sayısı gibi şeylerdir. Şimdilik geleceği tam olarak tahmin edebilme becerisine sahip olamasak da bu sonuçları elde edebilmemiz bile önemli başarılardır.
Kaynaklar ve ileri okumalar:
- Maths in a minute: The Poisson distribution. yayınlanma tarihi: 7 Ocak 2022; Bağlantı: https://plus.maths.org/
- Poisson Distribution Formula and Meaning in Finance. Yayınlanma tarihi: 19 Mayıs 2022; Bağlantı: https://www.investopedia.com/
Dip Not:
Matematiksel, 2015 yılından beri yayında olan ve Türkiye’de matematiğe karşı duyulan önyargıyı azaltmak ve ilgiyi arttırmak amacıyla kurulmuş bir platformdur. Sitemizde, öncelikli olarak matematik ile ilgili yazılar yer almaktadır. Ancak bilimin bütünsel yapısı itibari ile diğer bilim dalları ile ilgili konular da ilerleyen yıllarda sitemize dahil edilmiştir. Bu sitenin tek kazancı sizlere göstermek zorunda kaldığımız reklamlardır. Yüksek okunurluk düzeyine sahip bir web sitesi barındırmak ne yazık ki günümüzde oldukça masraflıdır. Bu konuda bizi anlayacağınızı umuyoruz. Ayrıca yazımızı paylaşarak da büyümemize destek olabilirsiniz. Matematik ile kalalım, bilim ile kalalım
Matematiksel