Anasayfa » MATEMATİK HER YERDE » Escher: Sıradışı Bir Ressam

Escher: Sıradışı Bir Ressam

Sonsuz denince akla bu kavramı sanatta en iyi biçimde yakalayan ünlü grafik sanatçısı Escher geliyor. Birbirini çizen eller, birbirine dönüşen varlıklar ve içine girdiğinizde kaybolacağınız resimler…

Cornelis Escher veya daha çok kullanılan şekliyle M.C. Escher 1898 yılında Hollanda’da doğdu. Okul hayatı hiçbir zaman iyi olmayan M.C. Escher, çizimlerini gösterdiği grafik öğretmeni Samuel Jessurun de Mesquita’nın da tavsiyeleriyle grafik üzerine eğitim gördü.  Devamında hayatının önemli bir kısmını oluşturacak olan seyahat tutkusunun etkisiyle İtalya’ya gitti.

İtalya’nın etkisi çizimlerinden eksilmeyecek, birçok çalışmasında İtalya’ya dair şeyler yer alacaktı. 1935 yılında çok sevdiği İtalya’dan, yükselişteki faşist hareket yüzünden, ailesiyle beraber İsviçre’ye taşındı.

1937’de eserlerinin birkaçını gösterdiği kardeşi Berend, onu matematiğe yönlendirdi ve Escher’i matematikle tanıştıran kişi oldu. Escher simetri üzerine çalışmaya okuduğu bazı makalelerin tesiriyle başladı. 1937’nin sonlarına doğru ailesiyle Belçika’ya taşındı. 1941’de Alman işgali yüzünden ailesiyle beraber Belçika’dan Hollanda’ya kaçmak zorunda kaldı.

1950’lerin ortalarında ilgisi sonsuzluğun (2 boyutlu bir düzlemde) tasvirine kaydı. Daha sonra 1958’de tanıştığı Coxeter ile ömür boyu arkadaş kaldı ve Coxeter’in çalışmaları Escher’in birçok eserine ilham kaynağı oldu. Aynı yıllarda büyük bir üne de kavuşmuştu Escher, 2 boyutlu ve 3 boyutlu öğeleri aynı anda içeren birçok çalışmaya imza attı. 1972 yılında aramızdan ayrılmadan önceki son çalışması, aşağıda gözlemlediğiniz “Yılanlar”oldu. M.C. ESCHER

Kendisi matematiğe yakınlığını şöyle ifade etmiştir:

Bilim eğitiminden yoksun olmama rağmen kendimi sanatçı arkadaşlarımdan daha çok matematikçilere yakın hissettim.

Kısa bir bakışla Escher’in çalışmalarını birkaç grupta ele alabiliriz:

Düzlemi düzenli olarak bölmek:

Bu teknikle yaptığı resimlerinde sanatçı bir ya da birkaç motifi hiçbiri birbirinin üstüne gelmeyecek ve aralarında boşluk kalmayacak şekilde birbirlerini nasıl çevreleyebileceklerini araştırır. Bu yöntem matematikte düzlem doldurma problemine benzer. Escher bu işlemi çeşitli hayvan figürleri kullanarak fantastik bir şekilde icra eder. Bu grupta topladığımız çalışmaları arasında en etkileyici olanları hiperbolik düzlem kullandığı Circle Limit (Çember Limiti) serisidir.

Metamorfozlar

Metamorfozlar
Bu seride yüzey figür ilişkisi çarpıcı şekilde vurgulanırken, imkansız olan boyutlar arası yolculuk da resmedilir. Doğada değişim anlamına gelen metamorfozlarda, düzlemdeki düzenliliği bozmadan sürekli deforme edilen şekiller birbirine dönüşür, gece gündüze, balıklar kuşa evrilir.

Paradokslar


Escher’in en vurucu işleri paradoks (çelişki) ve sonsuzluk kavramını işlediği resimleridir. İmkansız figürleri kullanarak inşa ettiği dünyalar bizi çelişkiye götürür. Döngüsel paradoksları yaratmak için kurduğu hiyerarşik düzenlerde sürekli yukarı ya da aşağı hareket etseniz de, hiyerarşinin gereğine rağmen, yine başlangıç noktasına gelirsiniz. Bu gibi döngüler Bach’ın müziğinde de yer alır.

D.R. Hofstadler ünlü Escher Gödel ve Bach adlı kitabında bu üç şahsiyeti döngüsel paradokslarda buluşturur.

Escher’in eserlerinin açıklığı, kolay okunurluğu, akıcı anlatımı, iyi kurgulanmış güçlü yapısı iz bırakıcıdır. Dikkatli bir göz sanatçının resimlerinde tanık olduğu gariplikleri kolay kolay unutmaz.

Yaşamı süresince ve sonrasında çok tartışılmış bir sanatçı olan Escher, matematikçi olmasa da çalışmaları pek çok matematikçiyi etkilemektedir.

Kaynaklar:
1- Bool F.H… Escher Complete Graphic Work, Thames and Hudson, 1993
2- Cannon J.W., “Mathematics in Marble and Bronze: Sculptures of Heleman R.P. Ferguson”, Mathematical Intelliger, cilt: 13, sayı: 1, kış 1991
3- Coxeter H.S.M, Escher: Art and Science, Elsevier Science Publishers, 1986
4- Fomenko A., Mathematical Inspirations, American Mathematical Society Press, 1990.
5- Hofstadler D.R, Gödel esher and Bach: The Eternal Golden Braid, Vintage Books Edition, 1980.
6- Kappraff J., Conecttons: The Geometric Bridge between Art and Sciences, Mc GrawHill Pub. Co., 1991.
7- Nargel E., Newman J.R., çev: Gözkan B., Gödel Kanıtlaması, Sarmal yayınevi, 1994.

Yazıyı Hazırlayan: Matematiksel

Avatar
Bu yazı gönüllü yazarlarımız tarafından hazırlanmış veya sitemiz editörleri tarafından belirtilen kaynaktan aslına uygun kalınarak eklenmiştir.

Bunlara da Göz Atın

Nasıl Yani? Bütün Uzaylar Simetrik Değil mi Gerçekten?

Üç kişilik “küçük bir matematikçiler grubu” “büyük bir matematiksel başarı” göstererek Zimmer varsayımını ispatladı. 2006 …

Bir cevap yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

This site uses Akismet to reduce spam. Learn how your comment data is processed.