Fourier Dönüşümü: İnternette Müzik ve Fotoğraf Paylaşımını Mümkün Kılan Matematik!

Görselde gördüğünüz, Fourier Dönüşümü. Eğer Spotify, iTunes, Google Music tarzı servisleri kullanarak müzik dinliyorsanız, bu matematiksel formüle teşekkür edebilirsiniz.

Hatta internette gördüğünüz fotoğrafları minik JPG formatına dönüştüren de bu denklem. Ha bir de ses geçirmez (veya ses sıfırlayıcı) kulaklıklarınızın çalışmasını sağlayan da bu denklem.

Gelin nasıl çalıştığına bir bakalım…

Bu formül, matematikçilerin bir sinyalin ne tür frekanslara sahip olduğunu hızlıca anlamasını mümkün kılmaktadır. Bu çok önemli bir özellik. Ama biz diyoruz diye değil: 1867 yılında, fizikçi Lord Kelvin, bu matematiksel denkleme olan aşkını ilan etmişti:

Fourier’in Teoremi, modern analizin en güzel sonuçlarından biri olmakla kalmıyor; aynı zamanda modern fizikte en az anlaşılan birçok soruya yaklaşmamızda bize vazgeçilmez bir araç sunuyor.

Fourier Dönüşümü, matematikçi Baron Jean-Baptiste-Joseph Fourier tarafından geliştirildi ve 1822’de yazdığı Isının Analitik Teorisi isimli kitabında yayınlandı.

Baron, ısının malzemeler içinde ve etrafında nasıl aktığıyla ilgileniyordu. Bu olguyu çalışırken, bu dönüşüm formülünü geliştirdi. Ancak onun asıl büyük başarısı, karmaşık sinyallerin çok daha basit sinyallerin birbirine eklenmesiyle elde edilebileceğini fark etmesiydi.

Bunu, sinüsoid denen dalgalarla yapmayı tercih etti.

Diyelim ki bir piyanonun tuşlarından üçüne aynı anda bastınız. Bu durumda, 3 ayrı nota üretirsiniz. Bunların her birinin iyi tanımlanmış frekansları vardır. Bu frekanslara müzikte perde diyoruz. Bu perdelerin her biri, aşağıdaki gibi sinüs dalgalarından ibarettir.

3 Farklı Sinüs Dalgası

Ancak bu dalgaları birbirine eklediğinizde, şu dalgayı elde edersiniz:

Yukarıdaki 3 sinüs dalgasının bileşimi olan dalga

Fourier’in dehası, son derece karmaşık dalgaların bile sinüs dalgalarının toplamı olarak ifade edilebileceğini göstermesiydi; kimi zaman sonsuz sayıda basit yapılı sinüs dalgası kullanmak gerekse bile!

Bunun en büyük katkısı ise şu: Sonunda elde etmeyi istediğimiz sinyali oluşturmak için kaç tane ve hangi frekanslarda sinüs dalgası kullanmak gerektiğini tespit etmek oldukça kolaydır. Bu bilgiye sahipseniz, son ürün olarak üreteceğiniz dalganın tam frekansını da kesin bir şekilde bilebilirsiniz.

İşte bu yazının başındaki formülün bir adımda yaptığı da tam olarak budur.

Fourier Dönüşümü, orijinal sinyal içinde tam olarak hangi frekansların bulunduğunu açıklamamızı sağlayan bir fonksiyondur! Bu kulağa basit gelebilir. Ama değil.

Fourier Dönüşümü Sayesinde Dijital Veri İletiminde Devrim!

Diyelim ki internet üzerinden müzik yayını yapan bir firma sahibisiniz. Bir kayıt firması, bir müziği kaydettiğinde elde ettiği dosyayı bütün dinleyicilere aynen aktarabilirdiniz. Ancak bu dosya o kadar büyük olacaktır ki, internetin bant genişliği bunun için yeterli olmayacaktır. Çünkü müzik kayıtları yapılırken, hiçbir verinin kaybedilmemesi ve sesin her detayının kaydedilmesi hedeflenir. Müzik enstrümanlarından gelen her bir frekans kaydedilir ve “miksleme” denen süreç sonrasında tek bir müzik dosyasına dönüştürülür. Herhangi bir müziğin ufak bir kısmına Fourier Dönüşümü uygulayacak olursanız, bazı frekans parçalarının aşırı güçlü, bazı diğerlerininse oldukça sönük etkiye sahip olduğunu görebilirsiniz.

MP3 müzik dosyası tam da bunu yapar. Ancak bunu yaparken, o sönük frekansları veya duyma aralığımızın dışındaki frekansları müzikten çıkararak boyutunu düşürüyor. Bunu, şarkının sadece bir kısmında değil, tamamında yapıyor. Bunu yapmak için müziği milyonlarca ufak parçalaya bölüyor, en önemli frekans parçalarını tespit ediyor, gereksiz olanları eliyor ve işlemi tamamlıyor.

Bu işlemden geriye kalan, müziğin en önemli frekansları, yani notaları oluyor. Geri kalanı çaldığınızda, beyniniz orijinalinden farkını neredeyse hiç ayırt edemiyor. En önemlisi ise, dosya boyutu 10 kat kadar azalmış oluyor.

Spotify, Shazam ve Kulaklıklarınız

Spotify‘ı ele alalım. Spotify, masaüstü sunucularında Ogg Vorbis adı verilen bir dosya tipi kullanıyor. Vorbis, Fourier Dönüşümü’nün ışık hızındaki versiyonu olan Ayrık Kosinüs Dönüşümü denen bir formül kullanıyor. Bunun yaptığı da özünde aynı.

Meşhur şarkı tespit yazılımı Shazam da aynı yaklaşımı kullanıyor. Shazam’ın belirli frekanslardan oluşan bir veritabanı var ve siz ona bir şarkıyı dinlettiğinizde, şarkının sadece spesifik freakanslarını bu veritabanı ile kıyaslayıp uyuşan şarkıyı buluyor. Çünkü bu, tüm şarkıyı veritabanıyla kıyaslamaya göre çok daha hızlı ve isabetli.

Ses sıfırlayıcı kulaklıklarınız da Fourier Dönüşümü’nü kullanıyor. Bir mikrofon, etrafınızdaki gürültüyü kaydediyor, sonrasında kulaklık bütün ses spektrumundaki frekansları analiz ediyor ve müziğinize buna uygun frekanslar ekleyerek ağlayan bebeklerin veya yoldan gelen gürültünün seslerinin size ulaşmasına engel oluyor.

Ses Harici Alanlarda Fourier Dönüşümü

Şu ana kadar sadece ses sinyallerinden bahsettik. Ancak bu formülün geliştirilmesini sağlayan saha, ısının malzemeler boyunca nasıl hareket ettiğine yönelik çalışmalardı. Yani bu yaklaşım, uzamsal konularda da aynen çalışabiliyor. Fourier için bu, 2 boyutlu ısı dalgalarını kullanarak çok daha karmaşık ısı hareketlerini modelleyebilmek anlamına geliyordu.

Ancak bu yaklaşımı aynen kullanarak, dijital fotoğrafları da piksel piksel oluşturmaktan çok daha etkili yöntemler geliştirmemiz mümkün.

Kayıpsız dijital fotoğraflar her bir pikselin renk bilgisini ayrı ayrı depolar. Bu dosyayı JPG olarak kaydettiğinizde, bütün fotoğraf ufak parçalara bölünür ve bu blokların 2 boyutlu Fourier Dönüşümleri alınır. Bu, fotoğrafın renk ve parlaklığının, fotoğraf boyunca dağılımının uzamsal frekanslarını verir.

Tıpkı MP3 örneğinde olduğu gibi, JPG de bazı yüksek frekanslı parçaları atar. Bu parçalar görsele keskinlik ve netlik veren frekanslardır. Ancak birçoklarımız için bu renk farklarını algılamak neredeyse imkansızdır; dolayısıyla pikseller arasındaki ufak farkları veren frekanslardan kurtulmak, görselin kalitesini dikkate değer miktarda azaltmaz. Ancak elbette bunu abartacak olursanız, görselin kalitesi de düşecek ve bazı kısımları bariz şekilde bloklara ayrılmış gibi gözükecektir.

En iyi eğitilmiş gözlere ve kulaklara bile MP3 ve JPG dosyalarının yarattığı fark oldukça az gözükür. Ses ve görüntü harikadır; ancak orijinal dosyaya göre çok ama çok daha ufaktırlar. Bir diğer deyişle, Fourier Dönüşümü modern ve dijital fotoğrafları ve müzik dosyalarını pratik hale getirir. Bu sayede onları kolaylıkla paylaşabiliriz.

Düşünecek olursanız tüm bunlar, ufacık bir denklem için fazlasıyla etkileyicidir.

Kaynak: https://evrimagaci.org/fourier-donusumu-internette-muzik-ve-fotograf-paylasimini-mumkun-kilan-matematik-7728

Matematiksel


Hazırlayan: Matematiksel

Avatar
Bu yazı gönüllü yazarlarımız tarafından hazırlanmış veya sitemiz editörleri tarafından belirtilen kaynaktan aslına uygun kalınarak eklenmiştir.

Bir cevap yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

This site uses Akismet to reduce spam. Learn how your comment data is processed.