Anasayfa » BEYİN JİMNASTİĞİ

BEYİN JİMNASTİĞİ

Euclid Evreninde Yolculuk -4

Kaldığımız yerden devam ediyoruz. Bu seriyi okuyanlar şu an 6. önermenin verilmediğini fark edeceklerdir. Bunun sebebi hedefimizin Pisagor teoremi olmasıdır. …

Yazının Devamı İçin

Diaphantus Öldüğünde Kaç Yaşındaydı?

İskenderiye’de yaşamış olan matematikçi Diophantus, cebir alanındaki çalışmaları ile ünlüdür. 11. yüzyılda yaşamış olan Bizanslı bilgin Micheal Psellus’un bir mektubundan …

Yazının Devamı İçin

Zihin Egzersizi İçin 10 İlginç Paradoks

Zihnimiz, dünyaya gözümüzü açtığımız ilk andan itibaren etrafımızda olup bitenleri anlamlandırmak için çaba gösterir. Ama bazen öyle problem durumlarıyla karşılaşırız …

Yazının Devamı İçin

Euclid Evreninde Yolculuk-3

Önceki yazılarımızda eşkenar üçgen çizmeyi, verilen bir doğru parçasını istenilen yere taşımayı ayrıca verilmiş iki doğru parçasından büyük olanından küçük …

Yazının Devamı İçin

Kayıp Para Paradoksu

Kayıp Para Paradoksu, işlem sıralamasında yapılan bir hatadan dolayı sürekli olarak hatalı sonuçlar veren, aslında oldukça basit bir problemdir. Soruyu …

Yazının Devamı İçin

Euclid Evreninde Yolculuk-2

Bir önceki yazımızda Euclid’in muhteşem dünyasına giriş yapmış, yolculuğumuzu yapacağımız dünyanın ne gibi özeliklere sahip olduğunu görmüş ve ilk görev …

Yazının Devamı İçin

Elipsin İki Tanımının Eşdeğerliği: Dandelin Küreleri

Bir elipsi nasıl çizersiniz? Bunun en çok bilinen yöntemi, bir düzleme iki çivi çakmak ve bu çivilere bir ip bağlamaktır. …

Yazının Devamı İçin

Euclid Evreninde Yolculuk -1

Uzun bir yolculuğa çıkıyoruz. Bunun için elimizde kağıt ve kalemden başka (eğer tamamen zihninde her şeyi kurabiliyorsan bunlara da gerek …

Yazının Devamı İçin

Satrancın En Büyüğü Bir Kez Daha Magnus Carlsen!

2018 Dünya satranç şampiyonluk maçı, 9-28 Kasım tarihleri arasında Magnus Carlsen ve Fabiano Caruana arasında Londra’da oynandı. Oyuncuları kısaca tanımak …

Yazının Devamı İçin

Pell Sayı Dizisi ve Gümüş Oran

Matematikle az çok ilgili olan herkes, önemli kavramlardan olan Fibonacci dizisini ve altın oranı bilir. Matematiğin vitrin konularından olan bu …

Yazının Devamı İçin